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a b s t r a c t

Classical methods for the fault-slip data analysis generally assume that the slip direction along different
faults is independent. However, wedge faulting can often be observed in nature, characterized by the
interaction between intersecting faults, which produces a slip direction subparallel to the common
intersection direction among the faults. In this article the wedge faulting is described within the frame of
the Cosserat theory. We show that this type of faulting is possible both in the classical (Cauchy)
continuum as well as in the Cosserat continuum. In the classical continuum, there are two possible
optimal interacting subsystems of faults with orientations symmetrically aligned with respect to the
kinematic axes of the macrostrain tensor. In the Cosserat continuum these subsystems are not
symmetric, because they do not accommodate the same amount of deformation. One of them is
dominant and accommodates a larger amount of deformation than the other (weaker) subsystem. In
addition, the non-optimal faults with orientations close to the dominant optimal interacting subsystem
can also interact, forming an even more complex asymmetric interacting system.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades considerable progress in understanding
the effect of block (micro)rotations between the faults was ach-
ieved using the Cosserat continuum theory (Twiss et al., 1991, 1993;
Twiss and Unruh, 1998, 2007; Figueiredo et al., 2004; Twiss, 2009).
The Cosserat continuum belongs to a larger class of generalized
continua, which introduce intrinsic length scales into continuum
mechanics by accounting for higher order gradients, additional
degrees of freedom or fully non-local constitutive equations (e.g.,
Eringen, 1999, 2002; Forest and Sievert, 2003). While deformation
of the classical continuum is described by three independent
degrees of freedom (components of the displacement vector),
deformation of the Cosserat (or micropolar) continuum is described
by three additional degrees of freedom, which are the components
of the (micro)rotation vector describing the microrotation of indi-
vidual segments of the Cosserat continuum. The micropolar theory
was proposed in a systematic way by the Cosserat and Cosserat
(1909) at the beginning of the 20th century. However, it was only
in the last decades that a revival of this theory took place through
the milestones presented by, for example, Toupin (1962), Mindlin
(1964), Kröner (1968), Eringen and Suhubi (1964), and Eringen
(1968), to name a few. These authors also proposed a rigorous set
of constitutive and balance equations describing elasticity, hyper-
elasticity, and viscoelasticity. Nowadays, the Cosserat continuum
All rights reserved.
provides a relevant description of the mechanical behavior of
several classes of materials with microstructure, such as liquid
crystals, rocks and granular media, cellular solids, composites and
dislocated crystals. The pioneering attempts to apply the Cosserat
theory in the description of yielding and failure of brittle materials,
mechanics of fractured media and localization of plastic deforma-
tion of brittle materials, date back to Lippmann (1969), Besdo
(1985), and Mühlhaus and Vardoulakis (1987). The Cosserat
theory was also successfully applied in the fault-slip data analysis
by Twiss et al. (1991, 1993), Twiss and Unruh (1998, 2007), and
Figueiredo et al. (2004). These authors were the first to recognize
the influence of the block (micro)rotations on fault-slip patterns. In
the Cosserat continuum theory, the direction of slip along the faults
depends on the Cosserat strain tensor and not on the stress tensor.
From this it follows that the patterns of slip along the faults are
related in a systematic way to the global deformation.

The theory of kinematics and dynamics of fault reactivation in
the Cosserat continuum was further developed by �Zalohar and
Vrabec (2010), who also derived the constitutive model for
stressestrain relationship based on the J2 plasticity theory. They
showed that the strain is not the only parameter affecting the
geometry of active fault systems in the Earth’s crust. The other
parameter is stress. �Zalohar and Vrabec (2010) also performed
several numerical tests calculating the theoretical slip directions
and possible orientations of active faults in a given strain and stress
field. The aim of these tests was to discover a relationship between
the fault system geometry and the amount of (micro)rotation of
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blocks. Their tests indicate that the Cosserat theory spontaneously
predicts the slip direction along the faults to be subparallel to their
common intersection (wedge faulting). In their article, the authors
did not analyze this prediction theoretically.

The aim of this article is to develop a consistent theoretical
model of the wedge faulting within the frame of the Cosserat
theory. In the first chapter, we summarize some basic ideas of the
Cosserat continuum. The meaning of these basic principles is not
fully discussed here, therefore the reader should refer to our first
article (�Zalohar and Vrabec, 2010). In the following chapters, the
mathematics behind the interaction between intersecting faults is
fully discussed. The theory was tested numerically by the T-TECTO
3.0 computer program (�Zalohar and Vrabec, 2007, 2008, 2010)
available free of charge at the following site: http://www2.arnes.si/
wjzaloh/t-tecto_homepage.htm. T-TECTO solves the inverse
problem by minimizing some quantitative measure of misfit
between the observed and calculated slip direction along the fault
planes, and finds the best-fit of the model parameters to a set of
fault-slip data. In this way the T-TECTO computer program finds the
stress and strain boundary conditions that explain best the direc-
tion of slip along the observed faults. T-TECTO also enables the
forward modeling, and calculates the slip direction along the faults
in the stress and strain boundary conditions defined by the user. A
detailed description of the methods used in the T-TECTO computer
program is not given in this article, but can be found in �Zalohar and
Vrabec (2007, 2008, 2010).
2. Kinematics of the Cosserat continuum

The kinematics of the Cosserat continuum is characterized by
a (micro)rotational degree of freedom f

!Cosserat, which is inde-
pendent of the translatory motion described by the displacement
field u! (Fig. 1). In the Cosserat continuum the corresponding strain
measures are the Cosserat strain tensor e and the torsion-curvature
tensor k (Forest, 2000; Forest and Sievert, 2003; Forest et al., 1997,
2000, 2001):

e ¼ u�WC ¼ u!5V
/

þ 3f
!Cosserat ¼ vui

vxj
þ 3ijkf

Cosserat
k ;

k ¼ f
!Cosserat5V

/
¼ vfCosserat

i
vxj

: (1)
Fig. 1. Micro- and macro-rotations in a Cosserat continuum. f
!macro represents the large-

tensor). f
!Cosserat is the Cosserat microrotation of individual segments of the Cosserat contin

macrorotation and the Cosserat microrotation. l
!

1; l
!

2 and l
!

3 are kinematic axes of the in
Here, 3 represents the third-order permutation tensor
3¼ 3ijk ¼ 0:5ði� jÞðj� kÞðk� iÞ; andWC ¼ � 3f

!Cosserat is the
Cosserat microrotation tensor, which describes the microrotation of
the blocks. We have also introduced the deformation gradient tensor
(or instantaneous macrodisplacement gradient) u ¼ uij ¼ vui=vxj
¼ u!5V

/
. The symmetric part u(S) of this tensor defines the

instantaneous macrostrain, while the skew-symmetric part u(A)

defines the instantaneous macrorotation. The eigenvalues and
eigenvectors of the u(S) are denoted by l1, l2, l3 and l

!
1; l
!

2; l
!

3. We
also take l1� l2� l3, where the positive value defines contraction
and the negative value defines extension. Note that l

!
1; l
!

2; l
!

3 are
all unit vectors. In the description of geologic faulting we also take
Tr(u(S))¼ l1þ l2þ l3¼ 0 (no volume changes), which means that
l1 is always positive (contraction), whilst l3 is always negative
(extension). The intermediate eigenvalue l2 can be positive or
negative.

Because the deformation gradient tensor can be decomposed
into the symmetric and skew-symmetric parts u¼ u(S)þ u(A), the
Cosserat strain tensor can be written as

e ¼ uðSÞ þ uðAÞ �WðCÞ ¼ uðSÞ þ A; (2)

with e(S)¼ u(S) and e(A)¼A. We have introduced the relative
microrotation tensor

A ¼ uðAÞ �WC ¼ Wmacro �WC

¼ � 3ðf!macro � f
!CosseratÞ ¼ � 3f

!rel: (3)

The macrorotation or skew-symmetric part of the displacement
gradient tensor is Wmacro ¼ � 3f

!macro, with axial vector f
!macro.

The difference ðf!macro � f
!CosseratÞ between the macrorotation and

microrotation vectors is here termed the relative microrotation.
Normally, the Cosserat microrotation vector f

!Cosserat and macro-
rotation vector f

!macro are axial vectors, which can have any
orientation. However, following the simplified model of Twiss et al.
(1991, 1993) and Twiss and Unruh (1998, 2007) we presume that
both vectors are parallel to the intermediate eigenvector l

!
2 of the

macrostrain tensor u(S), because this is likely to be the most
significant component. In this casewe have f

!rel ¼ frel l
!

2 (�Zalohar
and Vrabec, 2010).

The magnitude of the relative microrotation is measured by the
relative microrotation (or vorticity) parameter (e.g., Twiss and
Unruh 1998, 2007)
scale regional rotation related to faulting (¼axial vector of the deformation gradient
uum. f

!rel is the relative microrotation, which is defined as the difference between the
stantaneous deformation tensor.
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Table 1
Explanation of the most important quantities used in the text.

Symbol Explanation First used
in Eq.

f
!Cosserat Cosserat microrotation vector (1)
f
!macro Regional macrorotation vector (3)
f
!rel Relative microrotation vector (3)
n! Unit normal to the fault plane (7)
m! Slip direction along the fault (9)
d
!

Director of the interacting system of faults (42)
C Relative microrotation parameter (4)
L Distance between the centroids of the

neighboring blocks measured perpendicular
to the fault plane

(9)

pr, a, b, c and d Parameters in the constitutive equation
for the cataclastic flow

(30)

sn and s Normal and shear stress along the fault (12)
e Cosserat strain tensor (1)
e(S) and e(A) Symmetric and skew-symmetric parts of the

Cosserat strain tensor
(2)

k Torsion-curvature tensor (1)
s Stress tensor (11)
m Couple-stress tensor (11)
3 Third-order permutation tensor (1)
WC Cosserat microrotation tensor (2)
u Deformation gradient tensor (1)
u(S) Symmetric part of the deformation gradient

tensor (¼instantaneous macrostrain tensor)
(2)

u(A) and Wmacro Skew-symmetric part of the deformation
gradient tensor (¼instantaneous
macrorotation tensor)

(3)

A Relative microrotation tensor (3)
N Second-order projection tensor (8)
T Third-order projection tensor (8)
1 Fourth-order identity tensor (8)
gs s! ¼ LT : uðSÞ Component of slip due to the

instantaneous macrostrain
(10)

gc c! ¼ LT : A Component of slip due to the relative
microrotation

(10)

gm! ¼ LT : e The slip vector along the fault (9)
sn ¼ N : s Normal stress along the fault (12)
s! ¼ T : s Shear stress vector along the fault (12)
a T : uðSÞ Component of shear stress due to the

instantaneous macrostrain
(38)

b T : A Component of shear stress due to the
relative microrotation

(38)
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C ¼ fmacro � fCosserat

0:5ðl1 � l3Þ
: (4)

This parameter represents an extra degree of kinematic freedom
that describes a normalized measure of the difference between the
Cosserat microrotation of the rigid blocks f

!Cosserat and the average
macrorotation f

!macro of the global material lines in the global
deformation of the rock continuum (Twiss and Unruh, 1998). The
denominator in the Eq. (4) is the maximum possible shear strain
obtainable from the global macrostrain tensor. In most cases, the
value of this parameter ranges from �1 to 1, however, the values
C<�1 or C> 1 are also possible (Twiss et al., 1991, 1993). For C¼ 0,
there is no relative microrotation. The sign of C depends on the
orientation of the coordinate system, the sense of shear, and the
relative magnitudes of microrotation and macrorotation (Twiss
et al., 1993; Unruh et al., 1996). Looking in the positive direction
along the l

!
2 axis, the macrorotation has a right-handed sense

about the l
!

2 axis for a dextral macroscopic shear. Positive values of
C imply that rigid fault-bounded blocks are rotating faster than, and
in the same sense as, the macrorotation. Negative values of
C, �1< C< 0, imply that the microrotation of the blocks is smaller
than the macrorotation of the macroscopic shear zone. C¼�1
implies the fault blocks do not rotatewith respect to the shear zone.
Finally, C<�1 implies the fault blocks rotate counterclockwise in
the shear zone. This last value is possible if there is a component of
shortening or lengthening normal to the macroscopic shear zone
and the fault blocks have a restricted range of shapes and orien-
tations. Since this situation is unlikely, we do not search for values
of C outside the limits �1� C� 1 (e.g., Twiss et al., 1993; Unruh
et al., 1996). From Eq. (4) we see that the largest absolute value of
the relative microrotation is then

jCj ¼ 1/
���frel

max

��� ¼ 1
2
ðl1 � l3Þ: (5)

For a sinistral macroscopic shear, the coordinate axes are
defined so that themacrorotation has a left-handed sense about the
l
!

2 axis. In this case the signs of C are reversed. Thus the sign of C
does not provide an unique interpretation of the microrotation
unless additional independent information, such as the sense of
macroscopic shear relative to the positive direction of the l

!
2 axis,

is available (e.g., Unruh et al., 1996).
Characteristics of the instantaneous macrostrain tensor u(S) are

also described in terms of the instantaneous deformation param-
eter D

D ¼ ðl2 � l3Þ
ðl1 � l3Þ

: (6)

This parameter is a scalar invariant of the instantaneous macro-
strain tensor u(S) and defines the shape of the instantaneous strain
ellipsoid (e.g., Twiss et al., 1991; Twiss and Unruh, 1998). Its value is
unaffected either by the multiplication of each of the principal
strains by the same scalar constant or by the addition of any
component of volumetric strain rate to the deformation (e.g., Twiss
et al., 1991; Twiss and Unruh, 1998) (Table 1).

2.1. The slip direction

The strain and curvature vectors on each microplane (fault) are
given by

t
!

e ¼ e n! ¼ eijnj and t
!

k ¼ k n! ¼ kijnj: (7)

The second- and third-order projection tensors N and T are
defined with the fourth-order identity tensor 1 ¼ 1ijkl ¼ dikdjl and
the unit normal to the microplane (fault) n! as (e.g., Etse and Nieto,
2004)
N ¼ n!5 n! ¼ ninj;

T ¼ n!$1� n!5 n!5 n! ¼ nl1ijkl � ninjnk:
(8)

In the case of k¼ 0 the direction of slip along the fault is parallel
to the resolved shear direction, which is the tangential component
of the strain vector

gm! ¼ LT : e ¼ LTijkejk ¼ Lðe n!� ðe n!$ n!Þ n!Þ
¼ L

�
eijnj �

��
eijnj

�
ni
�
ni
�
: (9)

Here, m! represents the unit vector in the direction of slip along the
fault, g is the amount of slip, and L is the distance between the
centroids of the two neighboring blocks. Because the Cosserat
strain tensor depends on the macrodeformation and the relative
microrotation tensors, the slip along the fault can be decomposed
into two components

gm! ¼ gs s!þ gc c!; (10)

where gs s! ¼ LT : uðSÞ ¼ LTijku
ðSÞ
jk represents the contribution of

the macrodeformation field to the slip direction along the fault,
while gc c! ¼ L T : A ¼ LTijkAjk represents the contribution of the
relative microrotation.
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2.2. The stress measures

Surface forces and couples are represented by the generally non-
symmetric tensors, the force-stress tensor s¼ sij and the couple-
stress tensor m¼ mij

s! ¼ s n! ¼ sijnj and m! ¼ m n! ¼ mijnj: (11)

The force-stress vector and the couple-stress vector can be
decomposed into the normal and tangential components

sn ¼ N : s ¼ Nijsij; s! ¼ T : s ¼ Tijksjk;

mn ¼ N : m ¼ Nijmij; m!t ¼ T : m ¼ Tijkmjk: (12)

Thus, sn and mn represent the normal projected stress and the
normal projected couple-stress, whereas s! and m!t represent the
shear stress vector and the tangential projected couple-stress
vector, respectively.

The force-stress and couple-stress tensors s and m must fulfill
the equations of balance of momentum and of balance of moment
of momentum

s$V
/

þ f
! ¼ vsij

vxj
þ fi ¼ 0;

m$V
/

� 3: sþ c! ¼ vmij
vxj

� 3ijksjk þ ci ¼ 0;
(13)

where volume forces f
!
, volume couples c!, and mass density r

have been introduced (Forest, 2000).
3. Constitutive equations

Possible characteristics of constitutive equations for the faulting
deformations in the Earth’s crust (cataclastic flow) were first dis-
cussed by Twiss and Unruh (1998). They recognized three principal
driving mechanisms that should be incorporated: (1) elastic
properties of the blocks bounded by the faults, (2) frictional sliding
on the shear surfaces (faults), and (3) plastic deformation and
brittle fracture of rocks. The problem was further discussed by
�Zalohar and Vrabec (2010), who presented the constitutive model
based on the J2 plasticity theory. The authors derived the consti-
tutive equation relating the Cosserat strain tensor to the stress
tensor. Here, we summarize their theory and we also discuss the
constitutive equation relating the couple-stress and the torsion-
curvature tensors. We also present an exact description of the
homogeneous Cosserat deformation.

Assuming the strain is small, the Cosserat deformation and
torsion-curvature tensors are decomposed into elastic and plastic
parts (e.g., Willam, 2002; Forest and Sievert, 2003)

e ¼ ee þ ep; k ¼ ke þ kp: (14)

In the description of the cataclastic flow we assume that ee� ep
and ke� kp, so ez ep and kz kp. As discussed by Forest and
Sievert (2003), the classical theory of so-called standard materials
proposed by Germain et al. (1983), Lemaitre and Chaboche (1994),
and Forest et al. (2001) can be extended to Cosserat media by
choosing a viscoplastic potential U(s, m, R), the so-called pseudo-
potential of dissipation, such that

_ep ¼ vU

vs
; _kp ¼ vU

vm
; _q ¼ vU

vR
: (15)

The thermodynamic force associated with the material internal
variable q was denoted by R (see, for example, Forest and Sievert,
2003, for a more detailed definition). For the positivity of the
intrinsic dissipation to be ensured, the potential U(s, m, R) should
be a convex function of its variables.

Two main classes of potentials have been used in the past
(Forest and Sievert, 2003). In the first class, the potential is
a coupled function of stress and couple-stress tensors, U(s, m, R),
whereas in the second class the potential is a sum of two inde-
pendent functions of stress and couple-stress tensors

Utot ¼ Uðs;RÞ þ Ucðm;RcÞ: (16)

Both classes can be used to describe the rate-independent material
behavior. The first class of models involves a single yield function
f(s, m, R) and a single plastic multiplier _p (single criterion plasticity
model)

_ep ¼ _p
vf
vs

; _kp ¼ _p
vf
vm

; _q ¼ � _p
vf
vR

: (17)

The yielding occurs when f(s, m, R)� 0 (the plastic yield condition)
(Willam, 2002). The second class of models accounts with two yield
functions f(s, R, Rc) and fc(m, R, Rc), and two plastic multipliers
(multi-criterion plasticity model)

_ep ¼ _p
vf
vs

; _kp ¼ _k
vfc
vm

; _q ¼ � _p
vf
vR

; _qc ¼ � _k
vfc
vRc

: (18)

The yielding occurs when f(s, R, Rc)� 0 and fc(m, R, Rc)� 0. In this
last model, the coupling between deformation and curvature
comes from the balance equations and possibly coupled hardening
laws (Forest and Sievert, 2003). In the literature, numerous yield
functions have been proposed, which are mainly modifications
and extensions of the MohreCoulomb, von Mises and
DruckerePrager yield functions (e.g., de Borst, 1991, 1993; Mohan
et al., 1999; Hansen et al., 2001; Manzari, 2004; Salari et al., 2004).
The onset of yielding of the Cosserat medium can be successfully
accounted for using the extended von Mises or DruckerePrager
yield functions (J2 plasticity), as discussed, for example, by
Sawczuk (1967), Lippmann (1969), Besdo (1974, 1985), Mühlhaus
and Vardoulakis (1987), de Borst (1991, 1993), and Forest and
Sievert (2003). The following form of the extended von Mises
criterion encompasses the models that belong to the class of the
single criterion plasticity models

f ðs;m;RÞ ¼ J2d
�
sd;m

�
� RðpÞ (19)

with

J2d
�
sd;m

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1sd :sdþa2sd :sdT þb1m :mþb2m :mT

q
: (20)

J2d represents the generalized second invariant of deviatoric stress
and couple-stress tensors extended to the Cosserat continuum
(de Borst, 1993). sd is the deviatoric part of the stress tensor, sdT is
the transposed deviatoric part of the stress tensor, m is the couple-
stress tensor, mT is the transposed couple-stress tensor, and a1, a2,
b1 and b2 are the material parameters. Note that the stress tensor
s can be decomposed into the spherical and deviatoric parts
s¼ sBþsdwithsB ¼ hsi ¼ ð1=3ÞTrðsÞ1andsd ¼ s�sB. The
trace of the stress tensor Tr(s) is also known as the first invariant
J1 of the stress. From Eq. (17) we have (Forest and Sievert, 2003)

_ep ¼ _p
a1sd þ a2sdT

J2d
�
sd;m

� ; _kp ¼ _p
b1mþ b2mT

J2d
�
sd;m

� ; (21)

The use of the consistency condition _f ¼ 0 for plastic loading
leads to the following expression for the plastic multiplier (Forest
and Sievert, 2003)
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_p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1
a21�a22

_ep : _epþ a2
a22�a21

_ep : _e
T
pþ

b1
b21�b22

_kp : _kpþ b2
b22�b21

_kp : _k
T
p

s
:

(22)

This is, however, not the only possible extension of the von Mises
plasticity since the multi-criterion framework can also be adopted
(Forest and Sievert, 2003)

f ðs;RÞ ¼ J2d
�
sd

�
� Rðp; kÞ;

fcðm;RcÞ ¼ J2dðmÞ � Rcðp; kÞ:
(23)

Here, J2d(sd) and J2d(m) are as follows:

J2d
�
sd

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1sd : sd þ a2sd : sdT

p
;

J2dðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1m : mþ b2m : mT

p
:

(24)

The use of the consistency conditions _f ¼ 0 and _f c ¼ 0 for plastic
loading leads to the following expressions for the two distinct
plastic multipliers (Forest and Sievert, 2003):

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1
a21 � a22

_ep : _ep þ a2
a22 � a21

_ep : _eTp

s
;

_k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1
b21 � b22

_kp : _kp þ b2
b22 � b21

_kp : _kTp

s
:

(25)

The flow rules (Eq. (18)) then read

_ep ¼ _p
a1sd þ a2sdT

J2d
�
sd

� ; _kp ¼ _k
b1mþ b2mT

J2dðmÞ
; (26)

The constitutive equations that relate the stress and couple-stress
tensors to the Cosserat strain and torsion-curvature tensors can
be derived from Eq. (21) and/or Eq. (26). For example, Eq. (26) can
be rewritten into the following form:

_ep ¼ _p
J2d

�
sd

� ða1 þ a2Þ sðS;dÞ þ _p
J2d

�
sd

� ða1 � a2ÞsðA;dÞ;

_kp ¼ _k

J2dðmÞ
ðb1 þ b2Þ mðSÞ þ _k

J2dðmÞ
ðb1 � b2ÞmðAÞ:

(27)

where s(S,d) is the symmetric part of the stress deviator, s(A,d) is the
skew-symmetric part of the stress deviator, m(S) is the symmetric
part of the couple-stress tensor, and m(A) is the skew-symmetric
part of the couple-stress tensor. From these equations it also
follows:

_eðSÞp ¼ _p
J2d

�
sd

� ða1 þ a2ÞsðS;dÞ;

_eðAÞp ¼ _p
J2d

�
sd

� ða1 � a2ÞsðA;dÞ;

_kðSÞp ¼ _k

J2dðmÞ
ðb1 þ b2ÞmðSÞ;

_kðAÞp ¼ _k

J2dðmÞ
ðb1 � b2ÞmðAÞ:

(28)

Note that _f ¼ 0 and _f c ¼ 0, which means that J2d(sd)¼ R(p, k) and
J2d(m)¼ Rc(p, k) (see Eq. (23)). The deviatoric part of the stress
tensor and the couple-stress tensor are then

sd ¼ sðS;dÞ þ sðA;dÞ ¼ Rðp; kÞ
_pða1 þ a2Þ

_eðSÞp þ Rðp; kÞ
_pða1 � a2Þ

_eðAÞp ;

m ¼ mðSÞ þ mðAÞ ¼ Rcðp; kÞ
_kðb1 þ b2Þ

_kðSÞp þ Rcðp; kÞ
_kðb1 � b2Þ

_kðAÞp :

(29)
The constitutive equation relating the Cosserat strain tensor to
the full stress tensor can be formulated by adding the hydrostatic
pressure term pr1

s ¼ pr1þ a _eðSÞp þ b _eðAÞp ;

m ¼ c _kðSÞp þ d _kðAÞp ;
(30)

with a ¼ Rðp; kÞ= _pða1 þ a2Þ; b ¼ Rðp; kÞ= _pða1 � a2Þ, c ¼ Rcðp; kÞ= _k
ðb1 þ b2Þ; and d ¼ Rcðp; kÞ= _kðb1 � b2Þ as the constitutive parame-
ters. It is important that the same form of the constitutive relations
as in Eq. (29) and/or Eq. (30) can also be derived for the single
criterion plasticity model (Eq. (21)) and for other yield functions
within the J2 plasticity theory, for example, for the DruckerePrager
yield function (see, for example, de Borst, 1993, and Hansen et al.,
2001, for the definition) and for the PitmaneSchaeffereGraye
Stiles yield function (Dartevelle, 2003).

3.1. Description of the homogeneous Cosserat deformation

Looking at the definition of the Cosserat deformation measures
(Eq. (1)) it appears that the torsion-curvature tensor is uniquely
determined by the gradient of the Cosserat strain tensor (Toupin,
1962, 1964; Forest and Sievert, 2003)

kp ¼ 1
2

3:
�
ep5V

/
þ V

/
5

�
ep þ eTp

��
¼ 1

2
3lij

�
eij;k þ

�
ejk þ ekj

�
;i

�
: (31)

If the gradient of the Cosserat strain tensor is equal to zero, the
torsion-curvature tensor is also equal to zero

ep5V
/

¼ 0/kp ¼ f
!Cosserat5V

/
¼ 0 (32)

These two expressions define the homogeneous Cosserat defor-
mation field. In the terms of the rates-of-deformation this also

means that _kp ¼ _
f
!Cosserat5V

/
¼ 0. Note that in the Cosserat

media the torsion-curvature tensor kp is not related to the relative
microrotation but to the differential changes of the microrotations
in the neighborhood of a point. The above equation also shows that
if the torsion-curvature tensor kp is zero, then the gradient of the
Cosserat strain tensor is just the gradient of the symmetric part of
the Cosserat strain, which does not need to be zero. So the defor-
mation can be inhomogeneous even if kp¼ 0. Thus, kp¼ 0 is
a necessary but not a sufficient condition for the homogeneous
deformation.

It follows from the constitutive equations (Eq. (30)) that in the
homogeneous Cosserat deformation field the couple-stress tensor
is equal to zero

_kp ¼ 0/m ¼ c _kðSÞp þ d _kðAÞp ¼ 0: (33)

This is a very important result. We could expect that the couple-
stress tensor is related to the relative microrotation, but it is not.
The couple-stress tensor is related to the gradient of the Cosserat
microrotation, kp ¼ f

!Cosserat5V
/

. In the homogeneous Cosserat
deformation field the couple-stress tensor is equal to zero even
when the relative microrotation is large. Relative microrotation is
not necessarily related to some actual (micro)rotation of blocks
bounded by the fault planes. The relative microrotation is the
difference between the (regional) macrorotation and the micro-
rotation of the blocks. Even when the microrotation of blocks is
equal to zero, the macrorotation can be large. Consequently, the
relative microrotation is also large. One such example is the case
of the simple shear, where the sliding along numerous parallel
faults is accompanied by non-zero macrorotation and relative



J. �Zalohar / Journal of Structural Geology 37 (2012) 105e123110
microrotation even if the actual microrotation of blocks between
the parallel faults is equal to zero.

In summary, in the homogeneous Cosserat deformation field
the torsion-curvature tensor kp and couple-stress tensor m are
supposed to be small. This means that kpz 0, mz 0, and also
m$V

/
z0. In this case the skew-symmetric part of the stress tensor

is only balanced by the volume couples c! (see Eq. (13)). We have
two examples:

1. If the volume couples c! are small, the skew-symmetric part of
the stress tensor is also small and the stress state is symmetric.
It follows that we may have situations with intensive relative
microrotation accompanied by symmetric stress state. Three
conditions must be fulfilled in this case; (1) constant rate-of-
strain, (2) homogeneous Cosserat deformation, and (3) body
couples are absent. In this case the actual microrotation of
blocks between the fault planes is zero and the relative
microrotation would only be the consequence of the
macrorotation.

2. In the second case of homogeneous Cosserat deformation and
high volume couples we can expect an asymmetric stress
state. Because we suppose the electromagnetic or other
forces (with the exception of the gravity force) in the Earth’s
crust are not high enough to influence tectonic faulting and
rotations of the blocks, the volume couples can only be
related to the gravity force acting on asymmetric blocks
bounded by the fault planes. We may presume that the
volume couples would be high in the case of highly asym-
metric blocks with the mass center not aligned with the
center of (micro)rotation.

In effect, the above discussion shows (1) that the “symmetric
classical stress state” can be associated with a relative micro-
rotation and (2) that the motions associated with the extra degree
of freedom in a Cosserat material (¼relative microrotation) are not
necessarily associated with any asymmetric stresses or couple-
stresses in the material.
3.2. Elimination of the time

Because in the homogeneous Cosserat deformation field the
torsion-curvature tensor kp and the couple-stress tensor m are equal
to zero, we only have one constitutive equation relating the Cos-
serat strain tensor ep and the stress tensor s

s ¼ pr1þ a _eðSÞp þ b _eðAÞp : (34)

Although this constitutive relation is formulated in terms of rates-
of-deformation, in practice, we interpret these rates to be repre-
sented by small increments of deformation that accumulate over
a finite but geologically very short time interval (e.g., Twiss and
Unruh, 2007). Supposing that the rate-of-deformation was
approximately constant during the deformation phase, the time
could be eliminated from the constitutive equation by multiplying
the Eq. (30) by Dt, which does not affect the result. Thus, the rates
are represented by the instantaneous deformation, and the time
interval over which these increments accumulate is not a factor in
the analysis. In the fault-slip data analysis the Cosserat strain and
the corresponding stress tensors of the form e¼ const.e(orig.) and
s¼ const.s(orig.) are generally calculated. Here, e(orig.) ands(orig.) are
the actual Cosserat strain and corresponding stress tensors at the
time of faulting and e and s are our solutions, while const. is some
undetermined constant. The constitutive equation (Eq. (34)) then
reads
s ¼ pr1þ aeðSÞp þ beðAÞp ¼ pr1þ auðSÞ þ bA: (35)

Note that we also take epz e¼u(S)þA and kz kp.

3.3. The state of stress along the faults in the homogeneous Cosserat
deformation field

The form of the constitutive equation used in the T-TECTO
computer program is

s ¼ ð1� bÞT$1þ ð1� bÞuðSÞ þ bA (36)

Because the tensors of the form s¼ const.s(orig.) and
e¼ const.e(orig.) are only determined in the fault-slip data analysis,
we may take aþ b¼ 1. In addition, the first parameter pr on the
right side of Eq. (36) is defined as (1� b)T, with T being a parameter
related to the hydrostatic pressure. In this way, the stress tensors is
proportional to the Cosserat strain tensor e, when we choose
b¼ 0.5

s¼ ð1�bÞ
�
T1þuðSÞ þ b

1�b
A
	

¼ 1
2

�
T1þuðSÞ þA

�
¼ 1
2
ðT1þeÞ:

(37)

It follows from the equations gm!¼ LT :e and s!¼ T :s¼
1=2ðTT :1þT :eÞ ¼ 1=2ðT :eÞ that in this case the shear stress and
the slip direction are parallel. Note that T :1¼ 0.

From the linear constitutive law (Eq. (35)) we can derive the
following equations for the normal stress and the shear stress
vector:

sn ¼N :s¼ prN :1þaN :uðSÞ þbN :A ¼ prN :1þaN :uðSÞ;

s!¼ T :s¼ prT :1þaT :uðSÞ þbT :A ¼ aT :uðSÞ þbT :A; (38)

where bN:A¼ 0 (¼component of the normal stress due to the
relative microrotation) and pr T :1¼ 0 (¼component of the shear
stress due to the hydrostatic pressure). The component of shear
stress due to the instantaneous macrodeformation is aT :uðSÞ, and
the component of shear stress due to the relative microrotation
is bT :A.

3.4. Fault reactivation

Because of the nonlinear constitutive relationship between the
stress and strain, the shear stress s! ¼ T : s is generally non-
parallel to the direction of movement. The direction of slip along
the fault is given by equation gm! ¼ LT : e and depends on the
Cosserat strain tensor (supposing that the torsion-curvature tensor
can be neglected). In addition, the traction of the two neighboring
blocks is also related to a couple-stress, with a normal component
mn¼N:m and a tangential component m!t ¼ T : m. Generalization of
the Amontons’ condition to the Cosserat continuum would be
(�Zalohar and Vrabec, 2010)�
s!þ 1

Lc
m!t

	
$m!� m

�
sn þ 1

Lc
mn

	
(39)

or�
T : sþ 1

Lc
T : m

	
$m!� m

�
N : sþ 1

Lc
N : m

	
: (40)

Here Lc represents characteristic length for the torsion-curvature in
the Cosserat medium, and m is the friction coefficient. In some cases
we expect that Lc could be of the same order of magnitude than the
distance of the centroids of the two neighboring blocks L. In the
case of homogeneous deformation of the Cosserat medium, the
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torsion-curvature tensor k remains small, because it depends on
the gradient of the Cosserat strain tensor e (�Zalohar and Vrabec,
2010). From the constitutive equations (Eq. (30)) it follows that
the couple-stress tensor is also small, whichmeans that the couple-
stress m and characteristic length Lc in the Eq. (40) can be neglected.
In this case the condition for fault reactivation depends only on the
stress tensor s (Amontons’ law of friction)

ðT : sÞ$m!� mN : s or sr ¼ s!$m!� msn: (41)

This equation assumes that only the faults onwhich the shear stress
exceeds the frictional shear strength can be active. The probability
for a fault to slip is often described also in terms of the driving shear
stress in the direction of movement, s!$m!� msn, which should be
as high as possible (e.g., �Zalohar and Vrabec, 2008).

4. Interaction between intersecting faults

In the wedge failure, the interacting system of faults consists of
at least two intersecting faults having direction of movement
subparallel to the common intersection direction (Fig. 2). Take two
faults with the unit normals n!1 and n!2. The distances between
adjacent block centroids measured perpendicular to the fault
planes are L1 and L2. The director (intersection vector) is

d
! ¼ ð n!1 � n!2Þ=kð n!1 � n!2Þk: (42)

The shear (movement) direction should be parallel to d
!

_g d
! ¼ L1

�
_e n!1 �

�
_e n!1$ n

!
1
�
n!1

� ¼ _gs1 s!1 þ _gc1 c!1;

_g d
! ¼ L2

�
_e n!2 �

�
_e n!2$ n

!
2
�
n!2

� ¼ _gs2 s!2 þ _gc2 c!2:
(43)

We are looking for the solutions that satisfy this slip condition. Note
that the above and all the following equations are written in terms
of the slip velocity. By setting the right sides of the Eq. (43) equal, it
follows that,

_gs1 s!1 � _gs2 s!2 ¼ �
�
_gc1 c!1 � _gc2 c!2

�
: (44)

Because _gc c! ¼ L
_
f
!rel � n!; we have

_gs1 s!1 � _gs2 s!2 ¼ � _
f
!rel � ðL1 n!1 � L2 n

!
2Þ; (45)
Fig. 2. Schematic illustration of wedge faulting (simplified after Yoon et al., 2002). (a) Slid
projection. l

!
1; l
!

2; l
!

3 e kinematic axes of the instantaneous deformation tensor, n!1 ; n
!

2 e

case the relative microrotation has the contra-clockwise direction around the l
!

2 axis, whic
also used in the diagrams in the subsequent figures.
or in a more simple form

D _s! ¼ � _
f
!rel � D n!; (46)
with D _s! ¼ _gs
1 s!1 � _gs

2 s!2 and D n! ¼ L1 n
!

1 � L2 n
!

2, where D n! is
no longer an unit vector. Note that _gs s! ¼ LT : _uðSÞ. Therefore, Eq.
(46) can be written as�
T1 �

L2
L1
T2

	
: _uðSÞ ¼ � _

f
!rel �

�
n!1 �

L2
L1

n!2

	
: (47)

The rate-of-relative microrotation is _f
rel ¼ D_s=ðDn sin aÞ, where

a is the angle between
_
f
!rel and D n!. The two vectors D n! and D _s!

have the components (Dn1, Dn2, Dn3) and ðD_s1; D_s2; D_s3Þ. We see
from Eq. (47) that the rate-of-relative microrotation linearly

depends on the rate-of-macrostrain _uðSÞ.
The above Eq. (46) can be rewritten into the following form:

D _s! ¼ G
_
f
!rel; (48)

with

G ¼
2
4 0 Dn3 �Dn2
�Dn3 0 Dn1
Dn2 �Dn1 0

3
5: (49)

Note that G is a singular operator. The rate-of-relativemicrorotation
_
f
!rel can be written in the coordinate system defined by the base

vectors D n!=Dn and ðD n!� D _s!Þ=kD n!� D _s!k in the following form:

_
f
!rel ¼ D_s

Dn



D n!
Dn

ctgaþ D n!� D _s!

kD n!� D _s!k

�
and

_A ¼ � 3
_
f
!rel ¼ _A

�
_uðSÞ

;a
�
: (50)

Based on this equation, the rate-of-relative microrotation
_
f
!rel is

a function of the rate-of-macrostrain tensor _uðSÞ and the angle

a between the vectors D n! and
_
f
!rel. From Eq. (50) we get

_
f
! rel ¼ _b1D n!$ctgaþ _b2D n!� D _s!;

_b1 ¼ D_s
Dn2

and _b2 ¼ D_s

kD n!� D _s!kDn
(51)
ing direction is parallel to the line of intersection among two faults. (b) Stereographic
unit normals to faults 1 and 2, f

!
e relative microrotation vector parallel to l

!
2. In this

h is marked with 1. These same symbols marking the principal macrostrain axes are
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and

_
f
!rel ¼ _b1D n!$ctgaþ _b2GD

_s!: (52)
The geometry of the intersecting faults does not define the angle a.
Its value can only be defined by the dissipation energy. Because G is

a singular operator, expressing
_
f
!rel requires some mathematical

manipulation. In our highly simplified case of homogeneous
deformation field (supposing that torsion-curvature tensor k can be
neglected) the rate-of-dissipation of energy can be written as (see
Forest and Sievert, 2003)

_D
�
_uðSÞ

;a
� ¼ s : _e ¼ �

pr1þ a _uðSÞ þ b _A
�
:
�
_uðSÞ þ _A

�
: (53)

The angle a is defined by

v _D
va

¼ 0: (54)

Because pr1þ a _uðSÞ does not depend on a, we have

v

va
_D ¼ v

va
s : _eþ s :

v

va
_e ¼ v

va
b _A : _eþ s :

v

va
_A: (55)

where

v

va
b _A : _e ¼ b _b1

1

sin2 a
ð 3$D n!Þ : _uðSÞ � b _b

2
1
cos a

sin3 a
ð 3$D n!Þ

: ð 3$D n!Þ � b _b1 _b2
1

sin2 a
ð 3$D n!Þ : ðG$ð 3$D _s!ÞÞ (56)

and

s :
v

va
_A ¼ pr _b1

1

sin2 a
1 : ð 3$D n!Þ þ a _b1

1

sin2 a
_uðSÞ

: ð 3$D n!Þ � b _b
2
1
cos a

sin3 a
ð 3$D n!Þ

: ð 3$D n!Þ � b _b1 _b2
1

sin2 a
ðð 3$ðG$D _s!ÞÞ : ð 3$D n!ÞÞ: (57)

Having these expressions in mind, we can now combine all terms
with 1/sin2a and all terms with cosa/sin3a in Eq. (55). We get the
following:

v

va
_D ¼ A

1

sin2 a
� B

cos a

sin3 a
¼ 0; (58)

where

A ¼ b _b1ð 3$D n!Þ : _uðSÞ � b _b1 _b2ð 3$D n!Þ
: ðG$ð 3$D _s!ÞÞ þ pr _b11 : ð 3$D n!Þ þ a _b1 _u

ðSÞ

: ð 3$D n!Þ � b _b1 _b2ð 3$ðG$D _s!ÞÞ : ð 3$D n!Þ (59)

and

B ¼ 2b _b
2
1ð 3$D n!Þ : ð 3$D n!Þ: (60)

Both A and B are scalar quantities. We see that

A
1

sin2 a
¼ B

cos a

sin3 a
; (61)

and finally the expression for the angle a

tan a ¼ B
A

and a ¼ arctan
B
A
: (62)

5. The optimal interacting fault system

In the previous chapter we derived equations relating the
orientations of the intersecting faults and the rate-of-relative
microrotation. From Eq. (46) it follows that there always exists
interaction between equal sized intersecting faults producing
parallel direction of slip. First, having the rate-of-deformation
constant, the time can be eliminated from Eqs. (46) and (47), and
the relative microrotation linearly depends on the instantaneous
macrostrain:

D s! ¼ � f
!rel � D n!;�

T1 �
L2
L1
T2

	
: uðSÞ ¼ � f

!rel �
�
n!1 �

L2
L1

n!2

	
: (63)

Assuming (1) the distances between adjacent block centroids
measured perpendicular to the fault planes are equal, Li¼ Lj ci,j,
and (2) the interacting faults of the interacting subsystem are
characterized by the vector D n! ¼ n!i � n!j subparallel to the
relative microrotation vector f

!rel, it follows from Eq. (63),
D s! ¼ � f

!rel � D n!, that the difference between the slip direction
along the two intersecting faults, D s!, is equal to 0. Because this
difference does not depend on the magnitude of the relative
microrotation, the slip direction along the pair of faults is parallel.
We will call such a fault system “the optimal interacting fault
system”. Along the faults of this fault system the components of
slip and shear stress due to the relative microrotation,
gc c! ¼ LT : A and b T : A, have the same orientations as the
vectors d

!
and gs s! ¼ LT : uðSÞ, while the actual direction can be

the same or opposite, depending on the relative microrotation
vector f

!rel.
Eq. (63) also shows that the interaction in the optimal inter-

acting system is only possible between two equal sized faults lying
symmetrically with respect to the kinematic axes of the Cosserat
strain tensor. Only for such pairs of faults the vector D n! ¼ n!i � n!j
is parallel to the relative microrotation vector f

!rel. For other
interacting pairs of equal sized faults D s! is not equal to 0, because
the vector D n! ¼ n!i � n!j is not parallel to the relative micro-
rotation vector f

!rel. When for the two non-optimal interacting
equal sized faults the vector D s! is also equal to 0, they are related
to zero relative microrotations f

!rel ¼ 0, because in this case
D s! ¼ � f

!rel � D n! ¼ 0.

5.1. Dependence of the geometry of the optimal interacting system
on the instantaneous deformation parameter D

We showed that the orientation of slip along the faults of the
optimal interacting fault system does not depend on the relative
microrotation. Both vectors, gs s! ¼ LT : uðSÞ and gc c! ¼ LT : A are
parallel. They have the same orientations while their actual direc-
tion can be the same or opposite, depending on the relative
microrotation vector f

!rel. However, the geometry of the optimal
interacting system does depend on the orientations of the kine-
matic axes of the instantaneous macrostrain tensor u(S) and on the
instantaneous deformation parameter D, because the orientation of
slip is defined by gs s! ¼ LT : uðSÞ.

We will search for the exact analytical solutions for the geom-
etry of the optimal interacting system depending on the parameter
D in the classical continuum with no relative microrotation. The
orientations of the kinematic axes will be constant (Fig. 2b). If the
first fault of the optimal interacting system has the unit normal
n!1 ¼ ðn1;n2;n3Þ, then the second fault has the unit normal
(Fig. 2b) n!2 ¼ ðn1;�n2;n3Þ. The direction of slip along any fault is

gs s! ¼ LT : uðSÞ ¼ L
�
uðSÞ n!�

�
uðSÞ n!$ n!

�
n!
�
: (64)

Multiplication of the macrostrain tensor u(S) by some scalar
constant a and the addition of any component of volumetric strain
b1 do not affect the direction of slip



Fig. 3. Geometry of the optimal interacting system of faults in the classical (Cauchy)
continuum. The total interacting system consists of two subsystems (Fault subsystems
A and B) symmetrically aligned with respect to the kinematic axes of the instantaneous
deformation tensor u(S).
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gs s!0 ¼ L T :
�
auðSÞ þ b1

�
¼ LaT : uðSÞ þ LbT : 1

¼ La T : uðSÞ ¼ agsi s
!
; (65)

because LbT : 1 ¼ 0. In the following calculation we will use the
macrostrain tensor u(S) of the form

uðSÞ ¼
2
41 0 0
0 D 0
0 0 0

3
5: (66)

In the description of geologic faulting, this form of u(S) has no
physical sense, because in most cases the volume changes can be
neglected, Tr(u(S))¼ l1þ l2þ l3¼ 0. However, the above form of
u(S) does not affect the final results for the possible orientation of
the optimal interacting system. For the slip gs

1 s!0
1 along the first

fault we have

gs1 s!0
1 ¼

0
B@ n1 �

�
n21 þ Dn22

�
n1

Dn2 �
�
n21 þ Dn22

�
n2

��
n21 þ Dn22

�
n3

1
CA; (67)

and for the second fault

gs2 s!0
2 ¼

0
B@ n1 �

�
n21 þ Dn22

�
n1

�Dn2 þ
�
n21 þ Dn22

�
n2

��
n21 þ Dn22

�
n3

1
CA: (68)

Because the slip direction along both faults is equal and parallel to
the intersection vector d

!
, we have

gs1 s!0
1 ¼ gs2 s!0

2: (69)

The first and the third components are always equal for both faults,
because they do not depend on the sign of the component n2. For
the second component of the vectors gs

1 s!0
1 and gs

2 s!0
2, however, we

can only have (see also Fig. 2b)

Dn2 �
�
n21 þ Dn22

�
n2 ¼ 0: (70)

The components of the unit normals n!1 and n!2 can be expressed
in terms of the second component n2 of the vector n!1. From Eq.
(70) we have

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
�
1� n22

�q
: (71)

Taking into account that k n!1k2 ¼ n21 þ n22 þ n23 ¼ 1, we can
express vectors n!1 and n!2 in the following form:

n!1 ¼

0
BB@

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
�
1� n22

�q
n2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� DÞ�1� n22

�q
1
CCA; (72)

n!2 ¼

0
BB@

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
�
1� n22

�q
�n2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� DÞ�1� n22

�q
1
CCA: (73)

We always take the third component negative, so that the unit
normal is directed downwards. In this case we have four possible
solutions aligned symmetrically with respect to the kinematic axes
of themacrostrain tensor u(S) (Fig. 3). These four solutions form two
optimal subsystems of interacting faults, the first dipping northwards
and the second dipping southwards (Fig. 3). According to Eq. (42),
the both interacting subsystems are characterized by intersection
vectors d

!
1 or d

!
2

d
!

1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

1� D
p

;0;�
ffiffiffiffi
D

p �T
;

d
!

2 ¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
;0;�

ffiffiffiffi
D

p �T
:

(74)

The dip of the intersection vector is then

d ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
D

1� D

r
: (75)

For D¼ 0, the dip d is equal to zero. For D¼ 1, the dip is 90�. For
0<D< 1, the dip is 0� < d< 90� (Fig. 4).

The value of the component n2 in the above equations can be
arbitrary chosen, therefore all faults with the unit normal n!
perpendicular to the intersection vectors d

!
1 or d

!
2 belong to the

optimal intersection system. However, only pairs of faults with
D n! ¼ n!i � n!j parallel to the relative microrotation vector f

!rel

can interact. We will define the optimal plane, which has the unit
normal d

!
i (Fig. 2b).

Fig. 4 shows the geometry of the optimal interacting fault
system for three different values of the parameterD;D¼ 0,D¼ 0.22
and D¼ 1. The intersection vectors d

!
1 and d

!
2 become subvertical

as the parameter D increases toward 1. The cases of D¼ 0 and D¼ 1
are mathematically possible but physically have no sense, because
the shear stress along the faults is equal to zero. For D¼ 0 we have
l2¼ l3¼ l and the predicted faults of the optimal interacting fault
systemhave the unit normals n!i in the plane defined by the vectors
l
!

2 and l
!

3 (see Fig. 4). So n!i ¼ a l
!

2 þ b l
!

3, where a and b are
some scalar parameters. This means that the vector n!i is the
eigenvector of the symmetric part of the strain tensor, u(S). Because
of the linear constitutive equation between the stress and the
strain,s¼ pr1þ au(S) (see Eqs. (30) or (35)), the vector n!i is also the
eigenvector of the stress tensor

s n!i ¼
�
pr1þ auðSÞ

�
$
�
a l
!

2 þ b l
!

3
� ¼ ðpr þ alÞ n!i ¼ s n!i

(76)

The shear stress is then

s!i ¼ Ti : s ¼ s n!i � ðs n!i$ n
!

iÞ n!i ¼ s n!i � s n!i ¼ 0 (77)

Similar calculation is also possible for the case D¼ 1.



Fig. 4. Dependence of the geometry of the optimal interacting system on the instantaneous deformation parameter D for three different values of this parameter; D¼ 0, D¼ 0.22
and D¼ 1. For D¼ 0, the intersection vector d

!
for all faults is horizontal, whilst for D¼ 1 the intersection vector d

!
is vertical and points upwards (indicated by 1). Both solutions

are mathematically possible but physically have no sense, because the shear stress along the faults is equal to zero. For 0<D< 1, the total interacting system consists of two
interacting subsystems. The value of the parameter D defines the dip of the intersection vector d

!
for the both interacting fault subsystems. The larger the D, the larger the dip of the

intersection vector d
!
.
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5.2. Dependence of the geometry of the optimal interacting system
on the relative microrotation

Based on the above discussion, the orientation of slip along the
faults of the optimal interacting system does not depend on the
relative microrotation but remains parallel to the intersection
vector d

!
i. However, we can show that the geometry of this system

does depend (1) on the constitutive parameter b, (2) on the coef-
ficient of friction m¼ tanf (f is angle of friction), and (3) on the
relative microrotation f

!rel. First, it is important to have in mind
that based on the proposed constitutive equation (Eq. (35)) the
skew-symmetric component of stress tensor only affects the
magnitude of shear stress (�Zalohar and Vrabec, 2010). Since
A n! ¼ f

!rel � n!, the stress on the fault is

s n!¼ pr n
!þauðSÞ n!þbA n!¼ pr n

!þauðSÞ n!þbf
!rel� n!: (78)

The vector A n!¼ f
!rel� n! is perpendicular to the unit normal n!

and, consequently, the contribution of the skew-symmetric
component of the stress tensor lies in the fault plane. Changing
the relative microrotation will therefore only affect the shear stress
along the faults of the optimal interacting system.

Because the vectors gs s! ¼ LT : uðSÞ and gc c! ¼ LT : A are both
parallel to the intersection vector d

!
i, the shear stress component

due to the skew-symmetric component of stress b T : A ¼ bA n! ¼
bf
!rel � n! is also parallel to the intersection vector d

!
i. The vectors

gs s! ¼ LT : uðSÞ and d
!

i have the same direction, while the vectors
gc c! ¼ L T : A and bT : A can have the same or the opposite
direction (relative to the first two vectors), depending on the
relative microrotation vector f

!rel. Changing the magnitude of the
relative microrotation will therefore affect the driving shear stress
along the faults.

The Amontons’ condition for slip along the director d
!

i is

sr ¼ s!$ d
!

i � msn; (79)

or

�
aT : uðSÞ þ bT : A

�
$ d
!

i ¼ m
�
prN : 1þ aN : uðSÞ

�
; (80)

or also

�
pr n
!þauðSÞ n!þbf

!rel� n!
�
$ d
!

i�m
�
pr n
!þauðSÞ n!

�
$ n!: (81)
Note that the normal stress is sn ¼ s n!$ n! and the shear stress
along the director d

!
i is sr ¼ s n!$ d

!
i. Because pr n

!
$ d
!

i ¼ 0;
ðf!rel� n!Þ$ n!¼ 0; n!$ n!¼ 1and f

!rel ¼ frel l
!

2 we may write

auðSÞ n!$ d
!

i þ bfrel� l!2 � n!�
$ d
!

i � m
�
pr þ auðSÞ n!$ n!

�
: (82)

From here we can express frel. For the northward dipping faults on
Fig. 3 the term bð l!2 � n!Þ$ d!i is negative, therefore

frel�m
�
prþauðSÞ n!$ n!��auðSÞ n!$ d

!
i

b
�
l
!

2� n!�
$ d
!

i

¼
��sðSÞ �msn

����b� l!2� n!�
$ d
!

i
��¼ frel

0 ;

(83)

with sðSÞ ¼ auðSÞ n!$ d
!

i being the shear stress component along the

director d
!

i related to the symmetric part of the stress tensor. For
negative values of the relative microrotation frel, the shear stress
along these faults is larger and vice versa. The maximum physically

reasonable value of the frel
0 according to Eq. (5) is

frel
max ¼ 0:5ðl1�l3Þ. For southward dipping faults on Fig. 3 the term

bð l!2� n!Þ$ d!i is positive, therefore

frel�m
�
prþauðSÞ n!$ n!��auðSÞ n!$ d

!
i

b
�
l
!

2� n!�
$ d
!

i

¼�
��sðSÞ�msn

����b� l!2� n!�
$ d
!

i
��

¼�frel
0 : (84)

For positive values of the relativemicrorotation frel, the shear stress
along these faults is larger and vice versa. Having the orientations of
the kinematic axes as on Figs. 2 and 3, the northward dipping faults
can only be active if the relative microrotation frel has some value
that is smaller than frel

0 , whilst the southward dipping faults can be
active when the relative microrotation frel has value larger than
�frel

0 . The total optimal interacting system of faults in the Cosserat
continuum is thus asymmetrical (Fig. 5). We can have the following
situations (see also Fig. 5):

1. frel
0 s0;�frel

0 � frel � frel
0 (Fig. 5a and c). The slip is possible on

both optimal interacting subsystems of faults. However, one
subsystem is dominant over the other, depending on the sign of
frel. For example, if we take frel negative, the shear stress along
the northward dipping faults (Fig. 3a) will be higher as along
the southward dipping faults. Therefore, the northward
dipping optimal interacting subsystem will be the dominant.
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2. frel
0 s0;frel < �frel

0 or frel > frel
0 (Fig. 5b and d). The slip is

possible only on a single optimal interacting subsystem of

faults, depending on the sign of frel. For frel > frel
0 the slip is

only possible on the southward dipping faults. For frel < �frel
0

the slip is only possible on the northward dipping faults.

Fig. 5 illustrates the geometry of the optimal interacting fault
system in the Cosserat continuum for the value of the instantaneous
deformation parameter D¼ 0.22. For other values of the parameter
D, where 0<D< 1, the geometry of the optimal interacting fault
system is also similar. Varying the value of D only affects the dip of
the intersection vectors d

!
1 and=or d

!
2 according to Eq. (75).

6. The non-optimal interacting systems

A chosen non-optimally orientated fault has the unit normal n!
that is not perpendicular to neither of the vectors d

!
1 nor d

!
2. In the

coordinate system defined by the base vectors
l
!

2; d
!

i and n!0 ¼ l
!

2 � d
!

i the vector normal n! can be written as

n! ¼ a l
!

2 þ b n!0 þ g d
!

i (85)

The contribution of the relative microrotation to the slip direc-
tion is
Fig. 5. Geometry of the optimal interacting system depending on the relative microrotation
the Cosserat continuum the optimal interacting subsystems are not symmetrical, because th
do not have the same magnitude. Depending (1) on the orientations of the kinematic axes of
on the properties of the constitutive equation relating the stress and the strain, one of the i
and (c)). The dominant subsystem accommodates a larger amount of deformation, because th
relative microrotation, the faults of the weaker subsystem are impossible to slip, and the tot
for details.
LT :A ¼ Lf
!rel� n!¼ La f

!rel� l
!

2þLbf
!rel� n!0þLgf

!rel� d
!

i

(86)

The first component is always equal to zero, Laf
!rel� l

!
2 ¼ 0,

because f
!rel is parallel to the l

!
2. The second component is parallel

to d
!

i, while the third component is perpendicular to d
!

i. We see
that in the case when the component of the unit normal n! along

the base vector n!0 ¼ l
!

2� d
!

i is large, the contribution of the
relative microrotation to the slip direction is parallel to the director

of the optimal interacting subsystem d
!

i.
The Amontons’ condition for slip to be possible depends on the

contribution of the relativemicrorotation to the shear stress, bT : A.
It is important to have inmind that the component of slip due to the
macrostrain, gs s! ¼ LT : uðSÞ, and the shear stress component due
to the symmetric part of the stress tensor, aT : uðSÞ, are both
parallel. The contribution of the relative microrotation to the slip
direction, gc c! ¼ LT : A is also parallel to the contribution of the
relative microrotation to the shear stress, bT : A. However, the
resulting slip direction gm! ¼ LT : uðSÞ þ LT : A is not parallel to the
resulting shear stress s! ¼ T : s ¼ aT : uðSÞ þ b T : A, at least when
as b. Although the direction of slip along some non-optimal faults
frel. In all cases the value of the instantaneous deformation parameter was D¼ 0.22. In
e shear and the shear stress along the faults of the two optimal interacting subsystems
the instantaneous strain tensor u(S), (2) on the sign of the relative microrotation, and (3)
nteracting subsystems becomes dominant, while the other becomes weaker (cases (a)
e resolved shear and shear stress along the faults of this subsystem are higher. For large
al optimal interacting system consists of a single subsystem (cases (b) and (d)). See text
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might be subparallel to the intersection vector d
!

i, some orienta-
tions of these faults are unsuitable for slip to be possible. We can
expect that the geometry of the non-optimal interacting system
depends (1) on the friction coefficient m and (2) on the asymmetry
of the stress defined by the constitutive parameter b and relative

microrotation f
!rel. Theoretically, we have the following situations:

1. For all faults with orientations close to the dominant optimal
interacting subsystem the components gc c! ¼ LT : A
(¼contribution of the relative microrotation to the slip direc-
tion) and bT : A (¼contribution of the relative microrotation to
the shear stress) are approximately in the same direction as the
corresponding vectors gs s! ¼ LT : uðSÞ; aT : uðSÞ; and d

!
i for

that subsystem. The slip direction along these faults becomes
subparallel to the vector d

!
i as the relative microrotation

increases (Fig. 6a). The driving shear stress increases and the
faults are highly possible to slip.

2. Contrary, for all faults with orientations close to the weaker
(inferior) optimal interacting subsystem, the both components
gc c! ¼ LT : A and bT : A are approximately in the opposite
direction as the vectors gs s! ¼ LT : uðSÞ; aT : uðSÞ and d

!
i for

that subsystem. The magnitude of the shear stress along these
faults decreases when the relative microrotation increases.
Therefore, the slip along the faults is becoming less probable
and the slip direction does not become subparallel to the
intersection vector d

!
i of the weaker optimal interacting

subsystem (Fig. 6b).

We may suppose that the Amontons’ condition for a slip is ful-
filled for non-optimal faults with orientations close to the domi-
nant optimal interacting subsystem. These faults will probably
interact (1) each other and (2) with faults of the dominant optimal
interacting subsystem. This hypothesis is further discussed in the
following chapters.

7. Numerical tests

The theory presented in the previous chapters was tested per-
forming several numerical tests using the AmontonsWin computer
program, which is part of the T-TECTO software. AmontonsWin
generates a prescribed number of faults, which are either randomly
orientated or follow a pre-defined distribution of orientations. The
direction of slip along the faults is then set parallel to the resolved
shear direction on the fault planes, calculated from the input Cos-
serat strain tensor according to the equation gm! ¼ LT : e. The
faults can only be activated when the resolved remote shear stress
Fig. 6. Effect of the relative microrotation on the slip direction along the non-optimal faults.
due to the instantaneous macrostrain gs s! ¼ LT : uðSÞ and the component of slip due to the
for the dominant interacting subsystem. Both components also have the same direction. Th
vector d

!
i as the relative microrotation increases. (b) Along the non-optimal faults close

opposite direction relative to the vector d
!

i for that subsystem. Therefore, the slip direction a
microrotation increases.
in the direction of slip exceeds the frictional resistance for sliding
according to Amontons’ law, Eq. (41). Even from the randomly
generated population of faults, only the faults with mechanically
suitable orientations are accepted by the AmontonsWin program,
thus providing insights into possible geometries of slip-capable
fault systems under various stressestrain boundary conditions.
The aim of the tests described belowwas to analyze the effect of the
relative microrotation on the geometry of interacting subsystems of
faults having slip direction subparallel to the common intersection
direction. In all tests it was assumed that the size of the faults is
equal, which is an obvious simplification.
7.1. Test 1

In Test 1 we analyzed the effect of the relative microrotation on
the direction of slip along the non-optimally orientated faults. In
this test, 2000 faults with random distribution were generated
setting the vorticity parameter to the value C¼�1 and the
constitutive parameter b to the value b¼ 0.5. The other constitutive
parameters were a¼ 1� b¼ 0.5, and pr¼ 0.22. The coefficient of
friction was m¼ tan20� and the instantaneous deformation
parameter was D¼ 0.22. High absolute value of the vorticity
parameter C was used because in this case the effect of the relative
microrotation can be studied most easily. The value b¼ 0.5 was
used to assure the parallelism between the shear stress and slip
direction (Eq. (37)). Possible orientations of all slip-capable faults
are shown in Fig. 7a by using the tangent-lineation plots.

In the next step, the number of pairs of intersecting faults was
counted having the slip direction subparallel to the intersection
vector (director) of the pair within the angular threshold of 20�.
Each fault was associated by the index number N, which is the
number of all other intersecting faults having subparallel direction
of movement. In this test, the angle 20� refers to the threshold
above which the slip directions are considered no longer subpar-
allel to the intersection line for the two faults. The 20� value was
used because in the stressestrain analysis of fault-slip data the
natural dispersions often lead to distribution of angular misfits (for
example between the theoretical and actual direction of slip)
characterized by the standard deviation between 10� and 30�

(�Zalohar and Vrabec, 2007, 2008, 2010).
Fig. 7b shows tangent-lineation plots for 1272 faults that have

the largest value of the index number, N> 400. Fig. 8 shows theo-
retical slip direction along these faults for five values of the vorticity
parameter; C¼ 1, C¼ 0.5, C¼ 0, C¼�0.5, and C¼�1. When the
vorticity parameter C goes toward �1, the slip direction along
the faults with the unit normal approximately perpendicular to the
(a) Along the faults close to the dominant interacting subsystem the component of slip
relative microrotation gc c! ¼ L T : A are both subparallel to the intersection vector d

!
i

erefore, the slip direction along the faults will become subparallel to the intersection
to the weaker interacting subsystem the vector gc c! ¼ LT : A has approximately the
long the faults will not become subparallel to the intersection vector d

!
i as the relative



Fig. 7. Tangent-lineation diagrams for the results of Test 1. The possible orientations of the unit normals for the slip-capable faults are confined to the gray areas. The slip directions
on the fault planes that are tangent to the plotting hemisphere at their slip plane poles are indicated by the field of arrows, which show the directions of slip of the material outside
the plotting hemisphere (in general the footwall block) relative to the material within the hemisphere (the hangingwall block). (a) Tangent-lineation diagram for 2000 artificially
generated faults in the Cosserat continuum with intensive relative microrotation (C¼�1) and in an asymmetric stress field (b¼ 0.5). (b) Tangent-lineation diagram for 1272 faults
with the largest value of the index number, N> 400. The index number defines the number of intersecting faults with subparallel direction of movement. This fault subsystem is
highly asymmetric and the slip direction along all faults is subparallel within the angular threshold 20� . See text for details.
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intersection vector d
!

(belonging to the dominant slip-capable
optimal interacting subsystem) becomes subparallel to the vector
d
!
. We therefore suppose that many non-optimally orientated

faults can also interact each other and with the faults of the
dominant optimal interacting subsystem.
7.2. Test 2

The effect of the relative microrotation on the faults that are

approximately perpendicular to the intersection vector d
!

(belonging to the dominant optimal interacting subsystem) is
further illustrated in Test 2. In this test, the effect of the relative
microrotation on the slip direction was analyzed in the case of an
interacting system consisting of two intersecting fault sets (Fig. 9).
Fig. 8. Results of Test 1. Tangent-lineation diagram for 1272 faults with the largest index nu
confined to the gray area. The field of arrows illustrates how the slip direction depends on t
C¼ 1, C¼ 0.5, C¼ 0, C¼�0.5, and C¼�1. The contra-clockwise direction of the relative m
marked with 5. When the vorticity parameter C goes toward �1, the slip direction along the
capable optimal interacting subsystem) becomes subparallel to the common intersection o
All faults in Fig. 9 were generated in the following manner. First,
two optimal faults with the unit normals n!1 and n!2 belonging to
the northward dipping dominant optimal interacting fault
subsystem were selected in such a way that the difference

D n! ¼ n!1 � n!2 was parallel to the relativemicrorotation f
!rel (and

intermediate kinematic axis l
!

2). In the second step the faults of the
both fault sets were generated by adding a random angular noise to
orientations of the unit normals n!1 and n!2. The angular threshold
of the noise was 10�. In this way, 20 fault planes were generated for
each fault set. The state of stress and the direction of slip along the
generated fault planes were then calculated by using the following
values of the parameters C¼�1, a¼ 0.5, b¼ 0.5, pr¼ 0.22, and
D¼ 0.22. The coefficient of frictionwas m¼ tan20�. In the next step,
the value of the vorticity parameter C was varied from þ1 to �1.
mber, N> 400. The possible orientation of the unit normal for the slip-capable faults is
he relative microrotation in the case of five possible values of the vorticity parameter;
icrorotation around the l

!
2 axis is marked with 1, while the clockwise direction is

faults with the unit normal close to the optimal plane (belonging to the dominant slip-
f the dominant optimal interacting subsystem.



Fig. 9. Results of Test 2 analyzing the influence of the magnitude of the relative microrotation on the slip direction along two intersecting fault sets. The fault sets have optimal
intersecting orientations for the vorticity parameter C¼�1. Therefore, the slip direction along all faults concentrates around the common intersection direction when C goes
toward �1. The contra-clockwise direction of the relative microrotation around the l

!
2 axis is marked with 1, while the clockwise direction is marked with 5. See text for details.
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Fig. 9 shows results of such tests for the following values of the
vorticity parameter: C¼þ1, C¼þ0.5, C¼�0.5 and C¼�1. The slip
direction along all faults concentrates around the common inter-
section direction when the vorticity parameter goes toward �1.

Test 2 additionally shows that the slip direction on the faults of
the optimal interacting system is highly numerically unstable.
Changing orientation of a chosen fault of the optimal interacting
system for a small amount has a significant effect on the slip
direction. Even if discrepancies from the optimal fault orientation
are small, a high magnitude of the relative microrotation is needed
in order the slip direction becomes parallel to the intersection line.

7.3. Test 3

In Test 3 we analyzed how the geometry of the interacting fault
system depends on the constitutive parameter b and on the
asymmetry of the stress tensor. We generated 2000 faults in three
different stress and strain boundary conditions (Fig. 10). In the first
case (Fig. 10a), the values of the constitutive parameters were
a¼ 0.3, b¼ 0.8, and pr¼ 0.22. In the second case (Fig. 10b), the
values of the constitutive parameters were a¼ 0.5, b¼ 0.5, and
pr¼ 0.22. In the third case (Fig. 10c), however, we used the
symmetric stress state defined by a¼ 1, b¼ 0, and pr¼ 0.22. In both
cases the instantaneous deformation parameter was D¼ 0.22 and
the friction coefficient was relatively high, m¼ tan50�. Again, we
used a high absolute value of the relative microrotation parameter,
C¼�1, because in this case the effects of the relative microrotation
can be studied most clearly. A high value of the friction coefficient
was used to find the fault orientations characterized by the highest
value of the driving shear stress.

Comparing to the results of Test 2 (compare Figs. 7a and 10b), it
is clear that high value of the friction coefficient significantly
reduces the subspace of the slip-capable fault orientations. It is also
important that all slip-capable faults with orientations close to the



Fig. 10. Results of Test 3. Tangent-lineation diagram illustrating the possible orientations of the slip-capable faults depending on the asymmetry of the stress tensor. The possible
orientation of the unit normal for the slip-capable faults is confined to the gray area and the slip direction along the faults is illustrated by the field of arrows. The state of stress on
the faults is illustrated by the Mohr diagrams for the Cosserat continuum (see �Zalohar and Vrabec, 2010). The increasing symmetry of the stress reduces the subspace of possible
orientations of slip-capable faults, because the shear stress on most faults decreases. This subspace is the largest for highly asymmetric stress in the case (a) where the value of the
constitutive parameter was b¼ 0.8. The subspace is smaller in the case (b) where the value of the constitutive parameter was b¼ 0.5. In the case (c) the symmetric stress was used,
b¼ 0. Here, the slip-capable faults have the unit normal subparallel to the optimal plane belonging to the dominant interacting subsystem. See text for details.
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optimal plane belonging to the dominant interacting subsystem
have the slip direction subparallel to the intersection vector d

!
(of

the dominant interacting subsystem) and are therefore expected to
interact with this subsystem. Based on the results of Test 3, the
highest driving stress is found along the intersecting faults with the
vector normal n! subparallel to the vector n!0 ¼ l

!
2 � d

!
. The

driving shear stress along the faults of the weaker optimal inter-
acting subsystem (and non-optimal faults close to it) is smaller or
even negative. In the case of high relativemicrorotation and/or high
friction coefficient these faults are very unlikely to slip (see
Chapter 5).

The subspace of the possible fault orientation is further reduced
by the symmetry of the stress tensor. For the symmetric stress
tensor, the slip-capable fault orientations are limited to the highly
confined subspace subparallel to the vector n!0 ¼ l

!
2 � d

!
. In the

case of the increasing asymmetry of the stress, b/ 1, this subspace
becomes broader and numerous slip-capable fault planes are
subparallel to themaximum kinematic axis l

!
1. The unit normals of

these faults are subparallel to l
!

3.

7.4. Test 4

In this test, one natural fault system observed in the Povodje
quarry in Slovenia was analyzed (Fig. 11). The studied area belongs
to the Southern Alps folds-and-thrusts belt (Placer, 1999). In the
Povodje quarry (longitude¼ 46�0803000; latitude¼ 14�2900600)
numerous medium sized faults (with length less than 10 m) can be
observed in the Upper Triassic limestone, which is thrust upon the
Lower Permian clastic rocks (Premru, 1983a,b). The fault system
consists of reverse faults, all having approximately equal dip but the
dip direction is very dispersed. In addition, the direction of slip
vectors on all faults is concentrated around the average common
intersection among the faults. The fault systemwas analyzed by the
T-TECTO computer program using the Cosserat inverse method
described by �Zalohar and Vrabec (2010). This method finds the
Cosserat strain and corresponding stress tensors that describe best
(1) the slip direction along the observed faults and (2) the geometry
of the observed fault system. However, the method cannot auto-
matically find the best values of the constitutive parameters a and
b, and the friction coefficient m. The value of these parameters
should be set by the user. This means that many tests should be
performed in order to find structurally acceptable results. For some
optimal values of the constitutive parameters a and b, and the
friction coefficient m, the T-TECTO output includes (1) the orienta-
tions of the kinematic axes of the Cosserat strain tensor,

l
!

1; l
!

2; l
!

3, (2) the relative values of the principal strains, l1, l2,
l3, (3) the value of the instantaneous deformation parameter D, (4)

the orientation of the relative microrotation vector, f
!rel, (5) the

value of the relative microrotation (or vorticity) parameter C, (6)
the stress tensor s, and numerous other parameters that are
helpful in structural interpretation of the observed fault system.



Fig. 11. Results of Test 4, where a natural fault system in the Povodje quarry (Slovenia) was analyzed. (a) Simplified geologic map of the area (Grad and Ferjan�ci�c, 1968; Premru,
1983a). (b) Results of the Cosserat inversion analysis (�Zalohar and Vrabec, 2010) defining the best-fitting stress and strain tensors. The faults indicate NW-SE subhorizontal
contraction and intensive relative microrotation in the contra-clockwise direction around the subhorizontal axis shown by 1. Faults have various orientations, however, the slip
direction along all faults is concentrated around the average common intersection direction among the fault planes. Such fault system is characteristic for the wedge faulting in the
Cosserat continuum. (c) Cross-section of the region. The Upper Triassic limestone is thrust over the Lower Permian clastic rocks. See text for details.
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In Test 4, the inversion procedure was performed for all possible
values of the constitutive parameter b (with a¼ 1� b), ranging from
zero to one with resolution of 0.1 (eleven tests). In all cases the
results indicate intensive relative microrotations with C¼�1. This
means that the reactivation of the faults should be explainedwithin
the frame of the Cosserat theory. In addition, for all values of b the
orientations of the calculated kinematic axes were stable and
subparallel to orientations shown in Fig. 11. The approximate value
of the constitutive parameter b can be found by comparing the
geometryof the observed fault systemto the theoreticallygenerated
fault system geometry (using the AmontonsWin computer
Fig. 12. Two artificial fault systems formed in the same strain boundary conditions as calcul
stress field with b¼ 0.5. (b) Symmetric stress field with b¼ 0. The most similar fault system
for details.
program) in similar strain and stress boundary conditions. The
results of two such tests are shown in Fig. 12. The geometry of the
generated fault systemwasmost similar to that actually observed in
thequarry,when the followingvalues of the constitutive parameters
were used; a¼ 1, b¼ 0, pr¼ 0.49, and m� tan40�. The value of the
parameter D only influences the dip of the common intersection
vector, therefore we used the plane strain defined by D¼ 0.5.

Based on the results of Test 3, one of the criteria to recognize
the symmetric or asymmetric stress states in the Earth’s crust is the
presence or absence of the fault planes that are subparallel to
the maximum kinematic axis l

!
1. In the case of the Povodje fault
ated in Fig. 11 analyzing the natural fault system in the Povodje quarry. (a) Asymmetric
geometry to that observed in nature is produced in the symmetric stress field. See text
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system, such fault planes are absent. This indicates the (almost)
symmetric stress state defined by a small value of the constitutive
parameter, bz 0.

Based on the above discussion, the value of the friction coeffi-
cient used in the inversion was m¼ tan40� and the value of the
constitutive parameter bwas equal to zero, b¼ 0. The results of the
inversion procedure are shown in Fig. 11. They indicate NW-SE
maximum contraction of the region, subvertical maximum exten-
sion of the rock massif, while in the direction of the intermediate
kinematic axis of the instantaneous macrostrain tensor there is no
deformation (plain strain, D¼ 0.5). Note that in the inversion
procedure the optimal value of the parameter D is found auto-
matically by the program itself. The negative value of the vorticity
parameter C¼�1 indicates a high relative microrotation opposite
to the macrorotation of the fault zone. As explained in Chapter 2,
the value C¼�1 indicates that blocks bounded by the fault planes
did not rotate at all (they did not follow the macrorotation of the
fault zone). According to Eq. (13), this also explains the symmetry of
the stress tensor. The geometry of the observed fault system is very
close to that predicted by the theory for the dominant optimal
interacting fault subsystem (Fig. 5d).

8. Discussion

The classical continuum theory was used to explain the origin
and tectonic interpretation of fault patterns characterized by
kinematic interaction between the faults (Nieto-Samaniego and
Alaniz-Alvarez, 1997). These authors tried to describe the forma-
tion of the fault-slip patterns, where the slip along two different
faults is subparallel to their common intersection vector. In geo-
mechanics, this type of faulting is well known as the wedge failure
(e.g., Markland, 1972; Goodman, 1976; Yoon et al., 2002), and is
extensively studied in the analysis of the rock slope stability. Nieto-
Samaniego and Alaniz-Alvarez (1997) discovered that the wedge
faulting characterized by kinematic interaction between the faults
is the most probable cause for the formation of the multiple slip
patterns on fault systems in the Earth’s crust. Such fault systems are
related to the reactivation of old pre-existing faults formed in
previous tectonic phases. The authors also assumed that reac-
tivated fault patterns with kinematic interaction do not reflect the
symmetry of the strain or stress, because the reactivated faults and
their cross-cutting relationships can have various orientations.

8.1. Intersecting faults in the classical continuum

The analyses described in this article reveal some new insights to
the process of wedge faulting and the formation of the interacting
fault systems. Contrary to the interpretation of Nieto-Samaniego
and Alaniz-Alvarez (1997), our theoretical analysis and numerical
tests show that the reactivated fault-slip patterns with kinematic
interaction do reflect the symmetry of the strain or stress. In the
classical (Cauchy) continuum there are two optimal orientations for
the interacting systems of faults forming two optimal interacting
subsystems. Both subsystems are aligned symmetrically with
respect to the kinematic axes of the strain tensor. Each of them is
characterized by its own intersection vector d

!
i. The resolved shear

and the resolvedshear stress alongall faults of the chosen subsystem
are bothparallel to the intersectionvector d

!
i. Theorientations of the

intersection vectors depend on the orientations of the kinematic
axes of the instantaneous macrostrain tensor u(S) and on the
instantaneous deformation parameterD, which describes the shape
of the instantaneous strain ellipsoid. The interaction is mathemati-
cally possible for all values of D, 0�D� 1. However, for D¼ 0 and
D¼ 1 the mathematical results have no physical sense, because the
shear stress along the faults is equal to zero.
8.2. Which faults can interact?

Both optimal interacting fault systems can consist of numerous
faults. However, the interaction is only possible between pairs of
faults with the unit normals n!i and n!j perpendicular to the
common intersection vector d

!
i and at the same time the difference

D n!ij ¼ n!i � n!j should be parallel to the relative microrotation

f
!rel. In nature, dispersions wouldmost probably lead to interaction
between arbitrary faults of the optimal interacting subsystem,
because the slip direction is subparallel and interaction is kine-
matically possible as a movement of the block wedge bounded by
the two fault planes. This is supported by the observations of the
natural fault system in the Povodje quarry (Test 4, this article) and
in the Peci quarry (�Zalohar and Vrabec, 2010). In these fault
systems, the slip directions are concentrated around the average
common intersection direction among the observed faults. We
believe that whenever the slip directions along two intersecting
faults come close to their common intersection vector, it is most
likely that the faults would interact. This would lead to the move-
ment of the block wedge along the intersection line.

8.3. Intersecting faults in the Cosserat continuum

There exists a significant difference in geometry of interacting
fault systems in the classical (Cauchy) continuum compared with
the Cosserat continuum. First, the theory shows that the magnitude
of the relative microrotation and asymmetry of the stress tensor
have no effect (1) on the orientations of the faults belonging to the
optimal interacting subsystems, and (2) on the slip orientation
along these faults. Both, in the classical (Cauchy) and Cosserat
continua, the direction of the intersection vector d

!
depends only

on the orientations of the kinematic axes of the instantaneous
macrostrain tensor u(S) (symmetric part, e(S), of the Cosserat strain
tensor, e) and on the instantaneous deformation parameter D.
Therefore the interacting fault subsystems predicted by the clas-
sical continuum (see Fig. 3) are also possible in the Cosserat
continuum but are not symmetric (see Fig. 5), because the relative
microrotation influences the magnitude of the resolved shear and
resolved driving shear stress along the faults. This means that in the
Cosserat continuum the two interacting subsystems do not
accommodate the same amount of deformation. Depending on the
magnitude of the relative microrotation f

!rel, one of the optimal
interacting subsystems is dominant over the other (it accommo-
dates a larger amount of deformation), because the resolved driving
shear stress along the faults belonging to the dominant subsystem
is higher. In some cases, depending on the friction coefficient m and
values of the constitutive parameters pr, a and b, the slip becomes
impossible along the faults of the weaker (inferior) subsystem
when the magnitude of the relative microrotation increases. In this
case the total optimal interacting fault system is asymmetric and
consists of a single optimal interacting subsystem.

8.4. Interpretation of the natural “optimal” interacting fault
systems

The above discussion has important consequences for the
interpretation of the fault-slip patterns in the Cosserat continuum.
Theoretically, the relative microrotation does not affect the orien-
tation of the resolved shear along the faults of the optimal inter-
acting subsystems. Therefore, we could conclude that these
subsystems contain little information on the Cosserat strain tensor
and corresponding stress tensor. It is, however, interesting that in
Test 4 the fault system observed in the Povodje quarry contained
reliable information on the field of relative microrotation, although
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the observed system has geometry very close to that predicted by
the theory for the dominant optimal interacting subsystem. This
can only be attributed to the strong dependence of the slip direc-
tion along the faults of the optimal interacting system on their
orientations. As illustrated in Test 2, small changes in orientation of
the chosen fault of the optimal interacting subsystem produce
significant changes in the slip direction. The slip direction along the
faults of the optimal interacting subsystems is highly numerically
unstable. In the presence of natural noise, it remains close to the
common intersection direction only for large relative micro-
rotation. This means that in nature even the almost optimal inter-
acting fault systems would contain reliable information on the field
of the relative microrotation.

8.5. Interpretation of the natural “non-optimal” interacting systems

What the relative microrotation influences most is the slip
direction along other non-optimally oriented faults that are
geometrically not part of the optimal interacting subsystems and
are not even close to it. We conclude that the diffusely orientated
non-optimal faults contain the most of the information on the
Cosserat strain and corresponding stress fields. The theory and tests
show that the slip directions along the faults with the unit normal
approximately perpendicular to the intersection vector belonging
to the dominant optimal interacting subsystem also become
subparallel to the common intersection vector of this subsystem. In
nature, these non-optimal faults would probably interact with each
other and also with the faults of the dominant optimal interacting
subsystem forming even more complex and a highly asymmetrical
fault system. The same is not true for the non-optimal faults with
orientations close to the weaker optimal interacting subsystem.
With the increasing relative microrotation the driving shear stress
along these faults decreases and the probability for faults to slip
also decreases. At the same time, the slip direction along these
faults does not become subparallel to the intersection vector of the
weaker optimal interacting subsystem.

The subspace of slip-capable orientations of the interacting non-
optimal faults depends on the friction coefficient m and asymmetry
of the stress tensor defined by the value of the constitutive
parameter b. For higher values of the friction coefficient and for
lower values of the constitutive parameter b (symmetric stress) the
subspace of slip-capable interacting non-optimal faults is confined
closely around the vector n!0 ¼ l

!
2 � d

!
. Note that d

!
is the inter-

section vector of the dominant optimal interaction subsystem. For
lower values of the friction coefficient and for more asymmetric
stress tensors (larger values of the parameter b) the subspace of
possible interacting fault orientations becomes broader. What Test
3 showed is that there exists a significant difference in the geom-
etry of the non-optimal interacting fault system that can form in
the symmetric and asymmetric stress. In the asymmetric stress
there exist numerous fault planes subparallel to the maximum
kinematic axis l

!
1 of the instantaneous macrostrain tensor u(S). The

orientation of slip along such faults is also subparallel to l
!

1. In the
symmetric stress these fault planes are impossible to slip.

Observations described by �Zalohar and Vrabec (2010) and in this
article (Test 4) showed that fault systems very similar to those
predicted by the theory exist in nature. It was also shown that they
contain reliable information on the relative microrotation field in
the time of faulting.

9. Conclusions

1. The classical continuum theory is capable of describing inter-
action between intersecting faults producing slip direction to
be subparallel to the common intersection direction among the
faults. In the classical continuum, there exist two optimal
interacting subsystems with symmetrical orientations with
respect to the strain or stress axes. The orientations of the
optimal interacting subsystems depend on the orientations of
the kinematic axes of the instantaneousmacrostrain tensor and
on the instantaneous deformation parameter D, which
describes the shape of the instantaneous strain ellipsoid.

2. These optimal interacting subsystems consist of numerous
differently orientated pairs of faults all having the same
direction of slip. Movement along the intersection line among
a pair of interacting faults leads to the wedge failure/faulting.

3. In the Cosserat continuum both optimal interacting subsystems
predicted by the classical theory are also possible but are not
symmetric. Because the relative microrotation has a consider-
able effect on the magnitude of the resolved shear and resolved
driving shear stress, one of the optimal interacting subsystems
becomes dominant and accommodates a larger amount of
deformation than the other (the weaker subsystem). In some
cases, the Cosserat continuum is characterized by a single
optimal interacting subsystem, which depends (1) on the fric-
tion coefficient, (2) on the constitutive parameters describing
the stressestrain relationship, and (3) on the magnitude of the
relative microrotation.

4. In the case of high relative microrotation, numerous non-
optimal faults with the unit normal approximately perpen-
dicular to the intersection vector belonging to the dominant
optimal interacting subsystem also have the slip direction
subparallel to the intersection vector of the dominant optimal
interacting subsystem. These non-optimal faults would most
probably interact with each other and with faults of the
dominant optimal interacting subsystem, thus forming an even
more complex and asymmetrical interacting system of faults.

5. Whenever fault systems observed in nature indicate wedge
faulting, the classical methods for fault-slip data analysis are
unsuitable. The Cosserat methods should be used instead.
Numerical tests (e.g., Test 4) demonstrate that the Cosserat
continuum theory predicts remarkably similar fault system
geometry that can sometimes be actually observed in nature.
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